Result of Your Query

A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Z

genegène (fr.); Gen (ger.)

  • The basic unit of heredity in living organisms, originally recognized as a discrete physical factor associated with the inheritance of a particular morphological or physiological trait, and later shown to be located at a specific site on a chromosome and to consist of a sequence of DNA (or RNA in certain viruses) containing a code for a protein or RNA molecule, together with any associated sequences necessary for transcription and translation. (OED 2008)
    gene
    1909

    The difference between the two kinds of homozygotes with respect to any unit-character is, that one […] has one pair of allelomorphs or ‘genes’ [Footnote: This word is proposed by Dr. Johannsen as a substitute for words such as pangenes, ids, allelomorphs, etc., which have been used to denote an internal something or condition upon whose presence an elementary morphological or physiological characteristic depends. The word “gene” has the advantage that it does not assume by its form or derivation any hypothesis as to the ultimate character, origin or behavior of the determininig factor.] in addition to those possessed by the other kind of homozygote

    Shull, G.H. (1909). The “presence and absence” hypothesis. The American Naturalist 43, 410-419: 414.

    1909
    Das Wort Gen ist völlig frei von jeder Hypothese; es drückt nur die sichergestellte Tatsache aus, daß jedenfalls viele Eigenschaften des Organismus durch in den Gameten vorkommende besondere, trennbare und somit selbständige ›Zustände‹, ›Grundlagen‹, ›Anlagen‹ – kurz, was wir eben Gene nennen wollen – bedingt sind 
    Johannsen, W. (1909). Elemente der exakten Erblichkeitslehre: 124.
    1911
    The segregation of one sort of ›gene‹ may have influence upon the whole organization. Hence the talk of ›genes for any particular character‹ ought to be omitted
    Johannsen, W. (1911). The genotype conception of heredity. Amer. Nat. 45, 129-159: 147.
    1915
    All what we mean when we speak of a gene for pink eye is, a gene which differentiates a pink eyed fly from a normal one – not a gene which produces pink eyes per se, for the character pink eye is dependent upon the action of many other genes
    Sturtevant, A.H. (1915). The behavior of the chromosomes as studied through linkage. Z. indukt. Abstamm.- Vererbungsl. 13, 234-287: 265.
    1917
    It may perhaps not be a very great exaggeration to say that every gene in the germ plasm affects every part of the body, or, in other words, that the whole germ plasm is instrumental in producing each and every part of the body
    Morgan, T.H. (1917). The theory of the gene. Amer. Nat. 51, 513-544: 519.
    1918

    Ein Gen ist die innere erbliche Bedingungseinheit für einen bestimmten Reaktionsmodus.

    Raunkiaer, C. (1918). Über den Begriff der Elementarart im Lichte der modernen Erblichkeitsforschung. Zeitschrift für induktive Abstammungs- und Vererbungslehre 19, 225-240: 230.

    1924
    gene complex
    Emerson, R.A. (1924). A genetic view of sex expression in the flowering plants. Science 59, 176-182: 180.
    1926
    Zwei als zusammenhängendes Paar auftretende Gene könnte man vielleicht als ›allele‹ Gene bezeichnen
    Johannsen, W. (1926). Allgemeine Vererbungslehre. In: Brugsch, T. & Lewy, F.H. (Hg.) (1926). Die Biologie der Person, Bd. 1, 227-322: 249.
    1926
    Each gene does not act isolatedly from the whole genotype, is not independent of it, but acts, manifests itself, within it, in relation to it. The very same gene will manifest itself differently, depending on the complex of the other genes in which it finds itself
    Četverikov, S.S. (1926). O nekotorych momentach evoljucionnogo processa s točki zrenija sovremennoj genetiki (On certain aspects of the evolutionary process from the standpoint of modern genetics). Proc. Amer. Philos. Soc. 105 (1961), 167-195: 190.
    1929
    ›gene‹ material is any substance which, in given surroundings – protoplasmic or otherwise – is capable of causing the reproduction of its own specific composition, but which can nevertheless change repeatedly – ›mutate‹ – and yet retain the property of reproducing itself in its various new forms
    Muller, H.J. (1929). The gene as the basis of life. Proc. 1st Int. Cong. Plant Sci. Ithaca 1926, 897-921: 897.
    1929
    we may regard the gene […] as a tiny organism which can divide in the environment provided by the rest of the cell
    Haldane, J.B.S. (1929). The origin of life (in: Bernal, J.D. (ed.). The Origin of Life, London 1967, 242-249): 245.
    1930
    the visible effect of a gene substitution depends both on the gene substitution itself and on the genetic complex, or organism, in which this gene substitution is made
    Fisher, R.A. (1930). The Genetical Theory of Natural Selection: 54.
    1930
    Genes favorable in one combination, are [...] extremely likely to be unfavorable in another
    Wright, S. (1930). The genetical theory of natural selection. A review. J. Hered. 21, 349-356: 353; id. (1932). The roles of mutation, inbreeding, crossbreading, and selection in evolution. Proc. 6th Int. Congr. Genet. 1, 356-366.
    1931
    Selection relates to organism as a whole and its environment and not to genes as such
    Wright, S. (1931). Evolution in Mendelian populations. Genetics 16, 97-159: 155.
    1935
    [S]tellen wir uns das Gen als einen Atomverband vor, innerhalb dessen die Mutation, als Atomumlagerung oder Bindungsdissoziation (ausgelöst durch Schwankung der Temperaturenergie oder durch Energiezufuhr von außen) ablaufen kann und der in seinen Wirkungen und den Beziehungen zu anderen Genen weitgehend autonom ablaufen kann
    Timoféef-Ressovsky, N.W., Zimmer, K.G. & Delbrück, M. (1935). Über die Natur der Genmutation und der Genstruktur. Nachr. Ges. Wissensch. Göttingen Fachgr. VI N.F. 1, 189-245: 238.
    1936
    Dem Mosaik der Einzelanlagen im Kern der Fortpflanzungszellen entspricht nicht ein Merkmalsmosaik des fertigen Organismus. Die Ausbildung des Einzelwesesens ist die Gesamtreaktion eines Systems, in welchem ein Gen nur eine von sehr vielen Systembedingungen darstellt
    Kühn, A. (1936). Versuche über die Wirkungsweise der Erbanlagen. Naturwiss. 24, 1-10: 1.
    1937
    there is no such a thing as a gene
    Goldschmidt, R.B. (1937). Spontaneous chromatin rearrangements in Drosophila. Nature 140, 767.
    1937
    Nicht die Gene determinieren den ganzen Organismus, sondern dieser determiniert auf seinen verschiedenen polymorphen ontogenetischen Phasen, was die Gene oder ihre biologischen Rechtsnachfolger jeweils zu leisten haben
    Meyer, A. (1937). Das Prinzip der Ganzheitskausalität. Bremer Beiträge zur Naturwissenschaft 4, 99-142: 140.
    1941
    The ultimate unit of life [...] is not the cell but the gene
    Wright, S. (1941). The physiology of the gene. Physiolog. Rev. 21, 487-527: 487.
    1945
    Each of the […] thousands of gene types has, in general, a unique specifity. This means that a given enzyme will usually have its final specifity set by one and only one gene
    Beadle, G.W. (1945). Biochemical genetics. Chem. Rev. 37, 15-96: 19.
    1948
    If the structure that serves as a template (the gene or virus molecule) consists of, say, two parts, which are themselves complementary in structure, then each of these parts can serve as the mould for the production of a replica of the other part, and the complex of two complementary parts thus can serve as the mould for the production of duplicates of itself
    Pauling, L. (1948). Molecular architecture and the processes of life. 21st Sir Jesse Boot Foundation Lecture: 10; according to Olby, R. (1974/94). The Path to the Double Helix: 120.
    1949
    Was wir […] als ›Gene‹ feststellen, sind nicht Einheiten oder Anlagen, die für sich ein bestimmtes Merkmal oder Organ, etwa so oder so gefärbte oder gestaltete Augen, Flügel, Borsten u. dgl. hervorbringen; sie sind vielmehr Ausdruck von Verschiedenheiten im Ganzen übereinstimmender Genome. Der ganze Organismus wird vom ganzen Genom hervorgebracht, freilich in etwas verschiedener Weise, je nachdem ein Makromolekül an einem bestimmten Chromosomenort, ein sogenanntes Gen, beschaffen ist
    Bertalanffy, L. von (1949). Das biologische Weltbild, Bd. 1. Die Stellung des Lebens in Natur und Wissenschaft: 78f.
    1950
    Every sexual species [...] possesses a gene pool, in which each gene may be represented by a certain number of alleles, and each chromosome by one or more structural variants
    Dobzhansky, T. (1950). Mendelian populations and their evolution. Amer. Nat. 84, 401-418: 404.
    1955
    A gene is no longer considered as having a fixed, absolute selective value. Rather its contribution to fitness is relative and may change. It depends on the nature of the genotype of which it is a component
    Mayr, E. (1955). Integration of genotypes: synthesis. Cold Spring Harbor Symp. Quant. Biol. 20, 327-333: 333.
    1959
    it is probably the system that makes another gene rather than the gene that makes a copy of itself
    Pirie, N.W. (1959). Discussion statement. In: Clark, F. & Synge, R.L.M. (eds.). Proceedings of the First International Symposium on the Origin of Life on the Earth, 117-118: 118.
    1959
    Each gene was essentially treated as an independent unit favored or discriminated against by various causal factors [...] Evolutionary change was essentially presented as an input or output of genes, as the adding of certain beans to a beanbag and the withdrawing of others
    Mayr, E. (1959). Where are we? Cold Spring Harbor Symp. Quant. Biol. 24, 1-14: 2.
    1966
    In evolutionary theory, a gene could be defined as any hereditary information for which there is a favorable or unfavorable selection bias equal to several or many times its rate of endogenous change
    Williams, G.C. (1966). Adaptation and Natural Selection: 25.
    1967

    Gen, ein aus einer bestimmten Anzahl von Nukleotiden bestehender Teilabschnitt der Nukleinsäuren (im Normalfall DNS, bei einigen Viren auch RNS), der die genetische Information zur Steuerung einer bestimmten biochemischen Reaktion enthält und eine funktionelle Einheit darstellt

    Anonymus (1967). Gen. In: Stöcker, F.W. & Dietrich, G. (eds.). Brockhaus ABC Biologie, 293-294: 293.

    1967
    gene complex
    Lewis, E.B. (1967). Genes and gene complexes. In: Brink, R.A. (ed.). Heritage from Mendel, 17-47: 17; cf. Brink, R.A. (1932). Are the chromosomes aggregates of groups of physiologically interdependent genes? Amer. Nat. 66, 444-451.
    1968
    natural selective value is a function of the system of genes as a whole rather than something that can be assigned individual genes
    Wright, S. (1968). Evolution and the Genetics of Populations, vol. 1: 420.
    1976
    selfish gene
    Dawkins, R. (1976). The Selfish Gene.
    1976
    overlapping genes
    Barell, B.G., Air, G.M. & Hutchinson III, C.A. (1976). Overlapping genes in bacteriophage φΧ174. Nature 264, 34-41.
    1978
    split genes
    Westphal, H. & Lai, S.P. (1978). Displacement loops in adenovirus DNA-RNA hybrids. Cold Spring Harbor Symp. Quant. Biol. 42, 555-558.
    1978
    split genes
    Broker, T.R. et al. (1978). Adenovirus-2 messenger – an example of baroque molecular architecture. Cold Spring Harbor Symp. Quant. Biol. 42, 531-553.
    1978
    split genes
    Berget, S.M. et al. (1978). Spliced segments at the 5´ termini of adenovirus-2 late mRNA: a role for heterogenous nuclear RNA in mammalian cells. Cold Spring Harbor Symp. Quant. Biol. 42, 523-529.
    1981
    Genes are physical objects; phenotypic traits are not
    Sober, E. (1981). Evolutionary theory and the ontological status of properties. Philos. Stud. 40, 147-176: 165.
    1982

    gene The basic unit of inheritance, comprising a specific sequence of nucleotides on a DNA chain, that has a specific function and occupies a specific locus on a chromosome; alternative forms of a gene are known as alleles; genetic factor.

    Lincoln, R.J., Boxshall, G.A. & Clark, P.F. (1982). A Dictionary of Ecology, Evolution and Systematics: 99.

    1982
    There is no molecular biology of the gene. There is only molecular biology of the genetic material
    Kitcher, P. (1982). Genes. Br. J. Philos. Sci. 33, 337-359: 357.
    1983
    Instead of saying ›one gene-one polypeptide‹, we may describe the relationship as ›one polypeptide-one gene‹. Thus we may regard the sequence actually responsible for production of the polypeptide (including introns as well as exons) as the gene, while recognizing that from the perspective of another protein, part of this same sequence may also belong to its gene
    Lewin, B. (1983). Genes: 61; (4th ed. 1990): 109.
    1985
    Mendelian genes are identified by identifying their effects: the phenotypes observationally identified in the breeding experiments
    Rosenberg, A. (1985). The Structure of Biological Science: 97.
    1986
    a gene is neither an object nor a property but a weightless package of information that plays an instructional role in development
    Williams, G.C. (1986). Comments on Sober’s The Nature of Selection. Biol. Philos. 1, 114-122: 121.
    1991
    informational gene
    Carlson, E.A. (1991). Defining the gene: an evolving concept. Amer. J. Hum. Genet. 49, 475-487: 478.
    2000
    [A] gene g for linear sequence l in product p synthesized in cellular context c is a potentially replicating nucleotide sequence, n, usually contained in DNA, that determines the linear sequence l in product p at some stage of DNA expression. When I say that a nucleotide sequence, n, is a gene I mean that the sequence is a gene for l in p synthesized in c
    Waters, C.K. (2000). Molecules made biological. Revue Internationale de Philosophie 54, 539-564: 544.
    2000
    differential concept of the gene
    Schwartz, S. (2000). The differential concept of the gene: past and present. In: Beurton, P.J., Falk, R. & Rheinberger, H.-J. (eds.). The Concept of the Gene in Development and Evolution, 26-39.
    2001
    Gene-P is defined by its relationship to a phenotype, albeit with no requirements as regards specific molecular sequence nor with respect to the biology involved in producing the phenotype. Gene-P is the expression of a kind of instrumental preformationism (thus the ›P‹). When one speaks of a gene in the sense of Gene-P, one simply speaks as if it causes the phenotype. A gene for blue eyes is a Gene-P. […] Gene-D is defined by its molecular sequence. A Gene-D is a developmental resource (hence the ›D‹) which in itself is indeterminate with respect to phenotype. To be a Gene-D is to be a transcriptional unit (extending from start to stop codon) within which are contained molecular template resources.
    Moss, L. (2001). Deconstructing the gene and reconstructing molecular developmental systems. In: Oyama, S., Griffiths, P.E. & Gray, R.D. (eds.). Cycles of Contingency. Developmental Systems and Evolution, 85-97: 87f.
    2001
    ›Gene‹ is the process (i.e., the course of events) that binds together DNA and all other relevant non-DNA entities in the production of a particular polypeptide. The term gene in this sense stands for processes which are specified by (1) specific interactions between specific DNA segments and specific non-DNA located entities, (2) specific processing mechanisms of resulting mRNA’s in interactions with additional non-DNA located entities. These processes, in their specific temporal order, result (3) in the synthesis of a specific polypeptide. This gene concept is relational, and it always includes interactions between DNA and its (developmental) environment

    Neumann-Held, E.M. (2001). Let’s talk about genes: the process molecular gene concept and its context. In: Oyama, S., Griffiths, P.E. & Gray, R.D. (eds.). Cycles of Contingency. Developmental Systems and Evolution, 69-84: 74.

    2004
    A gene is a genome’s way of making a trait (or function)
    Falk, R. (2004). Long live the genome! So should the gene. Hist. Philos. Life Sci. 26, 105-121: 108
    2006
    A locatable region of genomic sequence, corresponding to a unit of inheritance, which is associated with regulatory regions, transcribed regions and/or other functional sequence regions
    K. Eilbeck et al. in Pearson, H. (2006). What is a gene? Nature 441, 398-401: 401.
    2007
    The gene is a union of genomic sequences encoding a coherent set of potentially overlapping functional products
    Gerstein, M.B. et al. (2007). What is a gene, post-ENCODE? History and updated definition. Genome Res. 17(6), 669-681.
    2007
    [T]he uninterrupted nucleic acid stretch of the coding sequence in the mRNA that corresponds to a polypeptide or another functional product; thus, in eukaryotes typically not yet present at DNA level, but assembled from gene fragments (exons) in course of RNA processing
    Scherrer, K. & Jost, J. (2007) Gene and genon concept: coding versus regulation. Theory Biosci. 126, 65-113: 106.
    2011

    Ein Gen ist zugleich eine Einheit der Vererbung und der Entwicklung, d.h. eine Einheit, die ererbt wurde oder vererbt werden kann und die an der Ausbildung (»Codierung«) eines Merkmals maßgeblich beteiligt ist. Es besteht in spezifischen molekularen Strukturen, die aber nicht notwendig als diskrete Einheit vorliegen. Die (entwicklungsbiologische) Einheit eines Gens ergibt sich in manchen Fällen erst aus einer funktionalen Perspektive, nämlich als die Summe derjenigen Strukturen, die an der Bildung eines bestimmten funktionalen Produkts (auf molekularer Ebene: einer mRNA oder eines Proteins) beteiligt sind.

    Toepfer, G. (2011). Historisches Wörterbuch der Biologie. Geschichte und Theorie der biologischen Grundbegriffe, vol. 2: 15.

Muller, H.J. (1950). The development of the gene theory. In: Dunn, L.C. (ed.). Genetics in the 20th Century, 77-99.

Carlson, E.A. (1966). The Gene. A Critical History.

Ravin, A.W. (1977). The gene as catalyst; the gene as organism. Stud. Hist. Biol. 1, 1-45.

Portugal, F.H. & Cohen, J.S. (1977). A Century of DNA. A History of the Discovery of the Structure and Function of the Genetic Substance.

Kitcher, P. (1982). Genes. Br. J. Philos. Sci. 33, 337-359.

Falk, R. (1986). What is a gene? Stud. Hist. Philos. Sci. 17, 133-173.

Portin, P. (1993). The concept of the gene: short history and present status. Quart. Rev. Biol. 68, 173-223.

Beurton, P.J., Falk, R. & Rheinberger, H.-J. (eds.) (2000). The Concept of the Gene in Development and Evolution. Historical and Epistemological Perspectives.

Rheinberger, H.-J. & Müller-Wille, S. (2004). Gene. In: Zalta, N. (ed.). The Stanford Encyclopedia of Philosophy (Winter 2004 Edition).

Stotz, K., Griffiths, P.E. & Knight, R. (2004). How scientists conceptualize genes: an empirical study. Stud. Hist. Philos. Biol. Biomed. Sci. 35, 647-673.

Neumann-Held, E.M. & Rehmann-Sutter, C. (eds.). (2006). Genes in Development. Re-reading the Molecular Paradigm.

Müller-Wille, S. & Rheinberger, H.-J. (2009). Das Gen im Zeitalter der Postgenomik. Eine wissenschaftshistorische Bestandsaufnahme.

Falk, R. (2009). Genetic Analysis. A History of Genetic Thinking.

Kätzel, D. (2011). Gen und Gestalt. Der Genbegriff der Entwicklungsbiologie.

Plischke, K. & Labisch, A. (2017). Zur Wissenschaftsgeschichte des biologischen Terminus ,Gen‘. Ein Beitrag zur Modellbildung in der Biologie Sudhoffs Archiv 101, 184-215.